Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.587
Filtrar
1.
Vet Med Sci ; 10(3): e1393, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640108

RESUMO

BACKGROUND: Various anti-parasitic drugs are used to control donkey parasitic diseases. The abuse of donkey drugs leads to the disposition of residues in the edible parts of treated donkeys. OBJECTIVES: The aim of this study was to (1) analyse the pharmacokinetics of ABZSO to serve as reference for the dosage regimen in donkey; and (2) calculate the withdrawal times of the ABZSO in the tissue of the donkey. METHODS: The concentrations of ABZSO and its metabolites in plasma and tissues were determined using high-performance liquid chromatography with an ultraviolet detector. Pharmacokinetic analysis was performed by the programme 3p97. RESULTS: The plasma concentrations of ABZSO and ABZSO2 concentration-time data in donkey conformed to the absorption one-compartment open model. The t 1 / 2 k e ${{{t1}} \!\mathord{/ {\vphantom { {2{{k}_{\mathrm{e}}}}}}}}$ of ABZSO was 0.67 h, whereas the t1/2 k e was 12.93 h; the Cmax and the Tp were calculated as 0.58 µg mL-1 and 3.01 h. The Vd/F of ABZSO was estimated to be 10.92 L kg-1; the area under the curve (AUC) was 12.81 µg mL-1 h. The Cmax and AUC values of ABZSO were higher than those of ABZSO2; however, t1/2 K e and Vd/F were lower. Other pharmacokinetics parameters were similar between the two metabolites. CONCLUSIONS: The results revealed that ABZSO2 was the main metabolite of ABZSO in donkey plasma. The concentrations of ABZSO and its chief metabolite (ABZSO2) were detected in liver, kidney, skin and muscle; however, ABZ-SO2NH2 was only detected in liver and kidney. The results also revealed that the depletion of ABZSO and its metabolite in donkey was longer, especially in skin.


Assuntos
Albendazol/análogos & derivados , Anti-Helmínticos , Animais , Anti-Helmínticos/farmacocinética , Injeções Intramusculares/veterinária , Equidae/metabolismo , Albendazol/farmacocinética
2.
J Ethnopharmacol ; 328: 118132, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38565411

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Infections caused by parasitic worms or helminth continue to pose a great burden on human and animal health, particularly in underdeveloped tropical and subtropical countries where they are endemic. Current anthelmintic drugs present serious limitations and the emergence of drug resistance has made it increasingly challenging to combat such infections (helminthiases). In Bangladesh, medicinal plants are often used by indigenous communities for the treatment of helminthiases. Knowledge on such plants along with screening for their anthelmintic activity has the potential to lead to the discovery of phytochemicals that could serve as novel molecular scaffolds for the development of new anthelminthic drugs. AIM OF THE STUDY: The purpose of this study was i) to conduct an ethnobotanical survey to gather data on Bangladeshi medicinal plants used in the treatment of helminthiases, ii) to test plants with the highest use values for their in vitro anthelmintic activity, and iii) to carry out in silico screening on phytochemicals present in the most active plant extract to investigate their ability to disrupt ß-tubulin function in helminths. METHODS: The ethnobotanical survey was conducted across three sub-districts of Bangladesh, namely Mathbaria, Phultala and Khan Jahan Ali. The in vitro screening for anthelmintic activity was performed in a motility test using adult Haemonchus contortus worms. Virtual screening using PyRx was performed on the phytochemicals reported from the most active plant, exploring their interactions with the colchicine binding site of the ß-tubulin protein target (PDB ID: 1SA0). RESULTS: The survey respondents reported a total of 32 plants for treating helminthiases. Based on their use values, the most popular choices were Ananas comosus (L.) Merr., Azadirachta indica A.Juss., Carica papaya L., Citrus maxima (Burm.) Merr., Curcuma longa L., Momordica charantia L., Nigella sativa L. and Syzygium cumini (L.) Skeels. In vitro anthelmintic testing revealed that A. indica leaves and bark had the highest activity with LC50 values of 16 mg/mL in both cases. Other plant extracts also exhibited good anthelmintic activity with LC50 values ranging from 16 to 52 mg/mL, while the value for albendazole (positive control) was 8.39 mg/mL. The limonoids nimbolide and 28-deoxonimbolide showed a binding affinity of -8.9 kcal/mol, and satisfied all drug-likeness parameters. The control ligand N-deacetyl-N-(2-mercaptoacetyl)colchicine had a binding affinity of -6.9 kcal/mol. CONCLUSION: Further in silico and in vitro studies are warranted on the identified limonoids to confirm the potential of these derivatives as novel drug templates for helminthiases. The current study supports the need for an ethnobotanical survey-based approach to discover novel drug templates for helminthiases.


Assuntos
Anti-Helmínticos , Haemonchus , Helmintíase , Limoninas , Plantas Medicinais , Adulto , Animais , Humanos , Plantas Medicinais/química , Tubulina (Proteína) , Anti-Helmínticos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Colchicina
3.
PLoS Negl Trop Dis ; 18(4): e0012048, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564496

RESUMO

BACKGROUND: Numerous studies indicate a potential protective role of helminths in diabetes mellitus (DM) progression. The complement system, vital for host defense, plays a crucial role in tissue homeostasis and immune surveillance. Dysregulated complement activation is implicated in diabetic complications. We aimed to investigate the influence of the helminth, Strongyloides stercoralis (Ss) on complement activation in individuals with type 2 DM (T2D). METHODOLOGY: We assessed circulating levels of complement proteins (C1q, C2, C3, C4, C4b, C5, C5a, and MBL (Lectin)) and their regulatory components (Factor B, Factor D, Factor H, and Factor I) in individuals with T2D with (n = 60) or without concomitant Ss infection (n = 58). Additionally, we evaluated the impact of anthelmintic therapy on these parameters after 6 months in Ss-infected individuals (n = 60). RESULTS: Ss+DM+ individuals demonstrated reduced levels of complement proteins (C1q, C4b, MBL (Lectin), C3, C5a, and C3b/iC3b) and complement regulatory proteins (Factor B and Factor D) compared to Ss-DM+ individuals. Following anthelmintic therapy, there was a partial reversal of these levels in Ss+DM+ individuals. CONCLUSION: Our findings indicate that Ss infection reduces complement activation, potentially mitigating inflammatory processes in individuals with T2D. The study underscores the complex interplay between helminth infections, complement regulation, and diabetes mellitus, offering insights into potential therapeutic avenues.


Assuntos
Anti-Helmínticos , Diabetes Mellitus Tipo 2 , Helmintos , Strongyloides stercoralis , Estrongiloidíase , Animais , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fator B do Complemento , Fator D do Complemento/uso terapêutico , Complemento C1q , Estrongiloidíase/complicações , Estrongiloidíase/tratamento farmacológico , Ativação do Complemento , Anti-Helmínticos/uso terapêutico , Lectinas
4.
Parasit Vectors ; 17(1): 173, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570858

RESUMO

BACKGROUND: Control of the zoonotic food-borne parasite Fasciola hepatica remains a major challenge in humans and livestock. It is estimated that annual economic losses due to fasciolosis can reach US$3.2 billion in agriculture and livestock. Moreover, the wide distribution of drug-resistant parasite populations and the absence of a vaccine threaten sustainable control, reinforcing the need for novel flukicides. METHODS: The present work analyses the flukicidal activity of a total of 70 benzimidazole derivatives on different stages of F. hepatica. With the aim to select the most potent ones, and screenings were first performed on eggs at decreasing concentrations ranging from 50 to 5 µM and then on adult worms at 10 µM. Only the most effective compounds were also evaluated using a resistant isolate of the parasite. RESULTS: After the first screenings at 50 and 10 µM, four hit compounds (BZD31, BZD46, BZD56, and BZD59) were selected and progressed to the next assays. At 5 µM, all hit compounds showed ovicidal activities higher than 71% on the susceptible isolate, but only BZD31 remained considerably active (53%) when they were tested on an albendazol-resistant isolate, even with values superior to the reference drug, albendazole sulfoxide. On the other hand, BZD59 displayed a high motility inhibition when tested on adult worms from an albendazole-resistant isolate after 72 h of incubation. CONCLUSIONS: BZD31 and BZD59 compounds could be promising candidates for the development of fasciolicidal compounds or as starting point for the new synthesis of structure-related compounds.


Assuntos
Anti-Helmínticos , Fasciola hepatica , Fasciolíase , Animais , Humanos , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Fasciolíase/parasitologia , Antinematódeos/uso terapêutico
5.
BMC Genomics ; 25(1): 341, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575858

RESUMO

BACKGROUND: Parasitic nematodes, significant pathogens for humans, animals, and plants, depend on diverse organ systems for intra-host survival. Understanding the cellular diversity and molecular variations underlying these functions holds promise for developing novel therapeutics, with specific emphasis on the neuromuscular system's functional diversity. The nematode intestine, crucial for anthelmintic therapies, exhibits diverse cellular phenotypes, and unraveling this diversity at the single-cell level is essential for advancing knowledge in anthelmintic research across various organ systems. RESULTS: Here, using novel single-cell transcriptomics datasets, we delineate cellular diversity within the intestine of adult female Ascaris suum, a parasitic nematode species that infects animals and people. Gene transcripts expressed in individual nuclei of untreated intestinal cells resolved three phenotypic clusters, while lower stringency resolved additional subclusters and more potential diversity. Clusters 1 and 3 phenotypes displayed variable congruence with scRNA phenotypes of C. elegans intestinal cells, whereas the A. suum cluster 2 phenotype was markedly unique. Distinct functional pathway enrichment characterized each A. suum intestinal cell cluster. Cluster 2 was distinctly enriched for Clade III-associated genes, suggesting it evolved within clade III nematodes. Clusters also demonstrated differential transcriptional responsiveness to nematode intestinal toxic treatments, with Cluster 2 displaying the least responses to short-term intra-pseudocoelomic nematode intestinal toxin treatments. CONCLUSIONS: This investigation presents advances in knowledge related to biological differences among major cell populations of adult A. suum intestinal cells. For the first time, diverse nematode intestinal cell populations were characterized, and associated biological markers of these cells were identified to support tracking of constituent cells under experimental conditions. These advances will promote better understanding of this and other parasitic nematodes of global importance, and will help to guide future anthelmintic treatments.


Assuntos
Anti-Helmínticos , Nematoides , Humanos , Animais , Caenorhabditis elegans , Intestinos , Nematoides/genética , Perfilação da Expressão Gênica , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico
6.
BMC Vet Res ; 20(1): 137, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575964

RESUMO

OBJECTIVES: Fasciolosis is of significant economic and public health importance worldwide. The lack of a successful vaccine and emerging resistance in flukes to the drug of choice, triclabendazole, has initiated the search for alternative approaches. In recent years, metallic nanoparticles have been extensively investigated for their anthelmintic effects. This study investigates the in vitro anthelmintic activity of copper oxide and zinc oxide nanoparticles against Fasciola hepatica. METHODS: The in vitro study was based on egg hatchability test (EHA), adult motility inhibition tests, DNA damage, ROS levels, as well as several biomarkers of oxidative stress, including glutathione peroxidase (GSH) and glutathione S-transferase (GST), superoxide dismutase (SOD) and malondialdehyde (MDA). For this purpose, different concentrations of copper oxide nanoparticles (CuO-NPs) and Zinc oxide nanoparticles (ZnO-NPs) (1, 4, 8, 12, and 16 ppm) were used to evaluate the anthelmintic effect on different life stages, including egg and adults of Fasciola hepatica, over 24 h. RESULTS: In vitro treatment of F. hepatica worms with both CuO-NPs and ZnO-NPs could significantly increase ROS production and oxidative stress induction (decreased SOD, GST and GSH and increased MDA) compared to control group. CONCLUSIONS: Based on the results, it seems that CuO-NPs and ZnO-NPs may be effective in the control and treatment of F. hepatica infection. Further research is needed to investigate their potential for in vivo use in the treatment of parasitic infections.


Assuntos
Anti-Helmínticos , Fasciola hepatica , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Óxido de Zinco/farmacologia , Cobre/farmacologia , Espécies Reativas de Oxigênio , Estresse Oxidativo , Anti-Helmínticos/farmacologia , Dano ao DNA , Superóxido Dismutase/metabolismo , Biomarcadores
7.
PLoS One ; 19(4): e0301920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593129

RESUMO

The use of anthelminthic drugs has several drawbacks, including the selection of resistant parasite strains. Alternative avenues to mitigate the negative effects of helminth infection involve dietary interventions that might affect resistance and/or tolerance by improving host immunity, modulating the microbiota, or exerting direct anthelmintic effects. The aim of this study was to assess the impact of diet on strongyle infection in horses, specifically through immune-mediated, microbiota-mediated, or direct anthelmintic effects. Horses that were naturally infected with strongyles were fed either a high-fiber or high-starch diet, supplemented with either polyphenol-rich pellets (dehydrated sainfoin) or control pellets (sunflower and hay). When horses were fed a high-starch diet, they excreted more strongyle eggs. Adding sainfoin in the high-starch diet reduced egg excretion. Additionally, sainfoin decreased larval motility whatever the diet. Moreover, the high-starch diet led to a lower fecal bacterial diversity, structural differences in fecal microbiota, lower fecal pH, lower blood acetate, and lower hematocrit compared to the high-fiber diet. Circulating levels of Th1 and Th2 cytokines, lipopolysaccharides, procalcitonin, and white blood cells proportions did not differ between diets. Overall, this study highlights the role of dietary manipulations as an alternative strategy to mitigate the effect of helminth infection and suggests that, in addition to the direct effects, changes in the intestinal ecosystem are the possible underlying mechanism.


Assuntos
Anti-Helmínticos , Microbiota , Animais , Cavalos , Dieta/veterinária , Intestino Grosso , Fezes/microbiologia , Amido , Anti-Helmínticos/farmacologia
8.
Parasit Vectors ; 17(1): 193, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658960

RESUMO

BACKGROUND: Aelurostrongylus abstrusus is one of the most important respiratory nematodes of felines. Infections may lead to respiratory clinical signs with varying severity or even death, emphasizing the need for preventive treatment of cats with outdoor access to circumvent patent infections. METHODS: Therefore, the preventive efficacy of a spot-on formulation of 280 mg/ml fluralaner and 14 mg/ml moxidectin (Bravecto® Plus spot-on solution for cats, MSD) against A. abstrusus was evaluated in a negative controlled, randomized and partially blinded efficacy study with 28 purpose-bred cats in a non-terminal design. In three different treatment regimes, the minimum recommended dose of 40 mg fluralaner and 2.0 mg moxidectin/kg bodyweight (BW) was administered once at 12, 8 or 4 weeks (study group G1, G2 and G3, respectively) prior to experimental infection with 300 third-stage A. abstrusus larvae, while G4 served as placebo-treated control. RESULTS: From 30 to 46 days post infection (dpi; SD 114 to 130), faeces were sampled to monitor first-stage larvae (L1) excretion for efficacy determination. Secondary efficacy criteria, including respiratory parameters, serological antibody levels and computed tomography (CT) findings, were assessed once before enrolment (SD -7 to -1) and before infection (SD 75 to 83). After infection, CT evaluation was performed once at 47-50 dpi (SD 131 to 134), and respiratory parameters and antibody levels were regularly assessed twice or once a week, respectively (1 up to 78 dpi, SD 85 up to 162). All animals in the control group excreted L1 by 33-37 dpi and remained positive throughout the study period from 41 to 46 dpi (SD 125 to 130). In the treatment groups, only one animal each of G1 and G2 excreted L1 at two consecutive days, and four cats of G1, two of G2 and three of G3 were positive on single occasions. While the geometric mean (GM) of the maximum number of excreted L1 per 5 g of faeces was 7380.89 in the control group (G4), GMs were significantly lower in the treatment groups with 1.63 in G1, 1.37 in G2 and 0.79 in G3. Thus, based on GMs, the reduction in excreted L1 exceeded 99.9% in all three treatment groups. Based on CT severity scores, all lungs of the animals of the control group showed severe pulmonary changes post infection, whereas lungs of the cats of the treatment groups were either unaltered (4 animals), mildly (11 animals), or moderately altered (5 animals). Moreover, seroconversion was observed in all cats of the control group, but not in those of the treatment groups. CONCLUSIONS: The combination of diagnostic methods used in this non-terminal study yielded coherent and reliable results. A single administration of Bravecto® Plus spot-on solution for cats was well tolerated and effective in the prevention of aelurostrongylosis for at least 12 weeks.


Assuntos
Doenças do Gato , Fezes , Isoxazóis , Macrolídeos , Metastrongyloidea , Infecções por Strongylida , Animais , Gatos , Doenças do Gato/parasitologia , Doenças do Gato/prevenção & controle , Doenças do Gato/tratamento farmacológico , Doenças do Gato/diagnóstico , Infecções por Strongylida/veterinária , Infecções por Strongylida/prevenção & controle , Infecções por Strongylida/tratamento farmacológico , Infecções por Strongylida/diagnóstico , Infecções por Strongylida/parasitologia , Macrolídeos/administração & dosagem , Isoxazóis/administração & dosagem , Metastrongyloidea/efeitos dos fármacos , Metastrongyloidea/isolamento & purificação , Fezes/parasitologia , Masculino , Feminino , Resultado do Tratamento , Anti-Helmínticos/administração & dosagem , Larva/efeitos dos fármacos
9.
Parasitology ; 151(4): 421-428, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576256

RESUMO

Cystic echinococcosis (CE), caused by the larval stage of the cestode Echinococcus granulosus, is one of the most widespread zoonoses in Mediterranean countries. Baiting not-owned dogs with praziquantel (PZQ), due to their key role in the maintaining the transmission of CE, currently appears to be the most effective way to limit the transmission of CE, as well as an important aspect to introduce for the control of this parasitic disease. Therefore, this study aims to test 3 types of PZQ-based baits by evaluating different parameters (integrity over time, attractiveness and palatability for dogs, and mechanical resistance after release to different altitudes) and the bait acceptance in field by target animals, i.e. not-owned dogs, by using camera traps. The double PZQ-laced baits (with a double layer of highly palatable chews) showed the greatest resistance in the environment while also preserving the attractiveness and palatability up to 10 days, also withstood heights of 25 m, thus resulting as the most suitable also for drone delivery. The results on the field showed that most of the baits were consumed by not-owned dogs (82.2%), while the remaining were consumed by wild boars (8.9%), foxes (6.7%), badgers (1.1%) and hedgehogs (1.1%), confirming the specific and high attractiveness of the double PZQ-laced baits for the target population and highlights how an anthelmintic baiting programme may be a viable tool for the management of E. granulosus among free-ranging dog populations in endemic rural areas.


Assuntos
Doenças do Cão , Equinococose , Echinococcus granulosus , Praziquantel , Animais , Cães , Echinococcus granulosus/efeitos dos fármacos , Equinococose/veterinária , Equinococose/prevenção & controle , Equinococose/parasitologia , Doenças do Cão/parasitologia , Doenças do Cão/prevenção & controle , Praziquantel/farmacologia , Anti-Helmínticos/farmacologia , Zoonoses/parasitologia , Suínos
10.
Vet Parasitol Reg Stud Reports ; 50: 101015, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38644039

RESUMO

In Benin, livestock breeders frequently use medicinal plants to treat gastrointestinal diseases in small ruminants. The aim of this review is to list the plants traditionally used in this context and to present the scientific findings on the efficacy of these plants. An extensive search was carried out using PubMed, Scopus, ScienceDirect, Biomed Central and Google Scholar databases to collect data, with combinations of relevant french and english keywords such as "ethnobotanical survey", "anthelmintic properties", "medicinal plants", "gastrointestinal parasites", "digestive strongyles", "Haemonchus", "Trichostrongylus", "small ruminants", "sheep", "goats" and "Benin". A total of 45 published articles met the eligibility criteria. This review listed 123 plants used by breeders to treat gastrointestinal ailments in small ruminants. The most commonly used parts are leaves and barks, and the most common forms are decoction, maceration and powder. Scientific studies have demonstrated the anthelmintic properties of 18 plants, including Zanthoxylum zanthoxyloides, Newbouldia laevis, Mitragyna inermis and Combretum glutinosum. The powders or leaf extracts of these plants showed in vivo significant reductions of over 50% in egg excretion, larval establishment, viability and fertility of gastrointestinal strongyles in small ruminants. Extracts of these plants also revealed in vitro inhibitory activity of over 50% on egg hatching, larval migration and motility of gastrointestinal strongyles. This manuscript highlights the traditional use of anthelmintic plants in small ruminants in Benin and provides scientific results supporting the efficacy of these plants.


Assuntos
Anti-Helmínticos , Gastroenteropatias , Doenças das Cabras , Cabras , Plantas Medicinais , Doenças dos Ovinos , Animais , Benin , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Plantas Medicinais/química , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/parasitologia , Gastroenteropatias/veterinária , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/parasitologia , Ovinos , Doenças das Cabras/tratamento farmacológico , Doenças das Cabras/parasitologia , Fitoterapia/veterinária , Ruminantes/parasitologia , Medicina Tradicional Africana
11.
Vet Parasitol Reg Stud Reports ; 50: 101019, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38644042

RESUMO

The aims of the present study were to identify strongyles in the feces of Thoroughbred horses based on larval morphology; to detect Strongylus vulgaris using molecular diagnosis and compare results to those of feces culture; and to determine the association between the presence of S. vulgaris with corresponding animal information (age range, gender, and anthelmintic use). Feces of horses kept in six Training Centers in Rio de Janeiro State, that showed the presence of ≥500 eggs per gram of feces (EPG) were subjected to strongyle identification. Of the 520 fecal samples collected, 35 had an EPG ≥ 500. After fecal culture for L3 larvae identification, DNA was extracted, subjected to PCR to amplify the ITS2 region DNA fragment of S. vulgaris, and sequenced. A total of 3500 larvae were analyzed. Most were classified as small strong (99.7%), with an emphasis on the type A subfamily of Cyathostominae. Forms of S. vulgaris only corresponded to 0.2%. In all, 25 samples showed amplified S. vulgaris DNA products and 11 showed nucleotide sequences with high sequence identity. Fecal culture and PCR results showed poor agreement (kappa = 0.105) for S. vulgaris diagnosis. Age, gender, anthelmintic use, and anthelmintic administration interval were not statistically significant. The present study showed the presence of S. vulgaris in the feces of horses kept in Rio de Janeiro Training Centers, mainly seen via PCR, which has emerged as the most effective tool for diagnosis. This study made it possible to identify strongyles that infect horses in the region, emphasizing upon the necessity for constant monitoring of the animals.


Assuntos
Fezes , Larva , Infecções Equinas por Strongyloidea , Strongylus , Animais , Cavalos , Fezes/parasitologia , Brasil , Strongylus/isolamento & purificação , Masculino , Infecções Equinas por Strongyloidea/diagnóstico , Infecções Equinas por Strongyloidea/parasitologia , Feminino , Doenças dos Cavalos/diagnóstico , Doenças dos Cavalos/parasitologia , Contagem de Ovos de Parasitas/veterinária , Reação em Cadeia da Polimerase/veterinária , DNA de Helmintos/análise , Anti-Helmínticos/uso terapêutico
12.
Rev Bras Parasitol Vet ; 33(1): e019023, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511818

RESUMO

The high prevalence of Haemonchus contortus and its anthelmintic resistance have affected sheep production worldwide. Machine learning approaches are able to investigate the complex relationships among the factors involved in resistance. Classification trees were built to predict multidrug resistance from 36 management practices in 27 sheep flocks. Resistance to five anthelmintics was assessed using a fecal egg count reduction test (FECRT), and 20 flocks with FECRT < 80% for four or five anthelmintics were considered resistant. The data were randomly split into training (75%) and test (25%) sets, resampled 1,000 times, and the classification trees were generated for the training data. Of the 1,000 trees, 24 (2.4%) showed 100% accuracy, sensitivity, and specificity in predicting a flock as resistant or susceptible for the test data. Forage species was a split common to all 24 trees, and the most frequent trees (12/24) were split by forage species, grazing pasture area, and fecal examination. The farming system, Suffolk sheep breed, and anthelmintic choice criteria were practices highlighted in the other trees. These management practices can be used to predict the anthelmintic resistance status and guide measures for gastrointestinal nematode control in sheep flocks.


Assuntos
Anti-Helmínticos , Haemonchus , Nematoides , Doenças dos Ovinos , Animais , Ovinos , Resistência a Medicamentos , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/epidemiologia , Contagem de Ovos de Parasitas/veterinária , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Fezes/parasitologia
13.
Adv Parasitol ; 123: 51-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38448148

RESUMO

The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.


Assuntos
Anti-Helmínticos , Zoonoses , Animais , Humanos , Zoonoses/prevenção & controle , Caenorhabditis elegans , Academias e Institutos , Pesquisa , Anti-Helmínticos/uso terapêutico
14.
Ecol Appl ; 34(3): e2956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38426805

RESUMO

Gastrointestinal helminth parasites undergo part of their life cycle outside their host, such that developmental stages interact with the soil and dung fauna. These interactions are capable of affecting parasite transmission on pastures yet are generally ignored in current models, empirical studies and practical management. Dominant methods of parasite control, which rely on anthelmintic medications for livestock, are becoming increasingly ineffective due to the emergence of drug-resistant parasite populations. Furthermore, consumer and regulatory pressure on decreased chemical use in agriculture and the consequential disruption of biological processes in the dung through nontarget effects exacerbates issues with anthelmintic reliance. This presents a need for the application and enhancement of nature-based solutions and biocontrol methods. However, successfully harnessing these options relies on advanced understanding of the ecological system and interacting effects among biotic factors and with immature parasite stages. Here, we develop a framework linking three key groups of dung and soil fauna-fungi, earthworms, and dung beetles-with each other and developmental stages of helminths parasitic in farmed cattle, sheep, and goats in temperate grazing systems. We populate this framework from existing published studies and highlight the interplay between faunal groups and documented ecological outcomes. Of 1756 papers addressing abiotic drivers of populations of these organisms and helminth parasites, only 112 considered interactions between taxa and 36 presented data on interactions between more than two taxonomic groups. Results suggest that fungi reduce parasite abundance and earthworms may enhance fungal communities, while competition between dung taxa may reduce their individual effect on parasite transmission. Dung beetles were found to impact fungal populations and parasite transmission variably, possibly tied to the prevailing climate within a specific ecological context. By exploring combinations of biotic factors, we consider how interactions between species may be fundamental to the ecological consequences of biocontrol strategies and nontarget impacts of anthelmintics on dung and soil fauna and how pasture management alterations to promote invertebrates might help limit parasite transmission. With further development and parameterization the framework could be applied quantitatively to guide, prioritize, and interpret hypothesis-driven experiments and integrate biotic factors into established models of parasite transmission dynamics.


Assuntos
Anti-Helmínticos , Besouros , Parasitos , Animais , Bovinos , Ovinos , Solo/química , Fezes , Ruminantes
15.
Parasitol Res ; 123(3): 162, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492070

RESUMO

Toxocara canis (T. canis) is a gastrointestinal nematode in dogs, and its larvae also infect humans, causing severe larval migratory disease. Anthelmintic drugs have become the primary means to combat T. canis. In this study, the efficacy of nitazoxanide (NTZ) was tested against all the internal stages of T. canis, including L3 larval stage in vitro experiments and gastrointestinal worm in vivo experiments. In the in vitro experiment, after treatment with NTZ at 7.81 and 62.5 µg/mL for 12 h, the larval mortality efficacy reached 90.0 and 100.0%, respectively. In the in vivo experiments, 100 mg/kg NTZ possessed good anthelmintic efficacy against T. canis, with an egg per gram (EPG) reduction of 99.19%, and 90.00% of dogs cleared with residual worms. These results were comparable to those of the positive control drug. The highest anthelmintic efficacy was observed in the group treated with 150 mg/kg NTZ. Based on faecal egg counts, the number of T. canis eggs decreased by 100.00%, and the percentage of dogs cleared with residual worms achieved 90.00% after 7 days of treatment in the 150-mg/kg NTZ treatment group. In general, NTZ showed great potential to be applied as an anthelmintic against T. canis.


Assuntos
Anti-Helmínticos , Doenças do Cão , Toxocara canis , Toxocaríase , Humanos , Animais , Cães , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Nitrocompostos/uso terapêutico , Tiazóis/uso terapêutico , Toxocaríase/tratamento farmacológico , Doenças do Cão/tratamento farmacológico , Contagem de Ovos de Parasitas/veterinária
16.
PLoS Negl Trop Dis ; 18(3): e0012073, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517907

RESUMO

BACKGROUND: Control efforts of soil-transmitted helminthiases rely primarily on large scale administration of anthelminthic drugs. The assessment of drug efficacies and understanding of drug behavior is pivotal to the evaluation of treatment successes, both in preventive chemo-therapy programs as well as in research of novel treatment options. The current WHO guidelines recommend an interval of 14-21 days between the treatment and follow-up, yet no in-depth analysis of egg excretion patterns of Trichuris trichiura after treatment has been conducted to date. METHODS: Within the framework of a multi-country trial to assess the efficacy and safety of albendazole-ivermectin combination therapy vs albendazole monotherapy against T. trichiura infections, we conducted a study collecting daily stool samples over the period of 28 days post-treatment in 87 participants in Pak Khan, Lao PDR. Egg counts were derived by duplicate Kato-Katz on-site for T. trichiura, hookworm and Ascaris lumbricoides and stool sample aliquots were subsequently analyzed by qPCR for the detection of T. trichiura infections. Sensitivity and specificity was calculated for each day separately using data derived by Kato-Katz to determine the optimal timepoint at which to assess drug efficacy. RESULTS: Egg excretion patterns varied across treatment arms. For T. trichiura, only the albendazole-ivermectin treatment led to a considerable reduction in mean egg counts, whereas both treatments reduced hookworm egg counts and A. lumbricoides were cleared in all participants after day 7. For T. trichiura, we found sensitivity to be highest at days 18 and 22 when using egg counts as outcome and days 19 and 24 when using qPCR. Specificity was high (>0.9) from day 14 onwards. For hookworm, the highest sensitivity and specificity were found at days 17 and 25, respectively. CONCLUSIONS: Based on our study, the ideal time period to assess drug efficacy for soil-transmitted helminth infections would be between day 18 and 24. The current WHO recommendation of 14 to 21 days is likely to yield acceptable outcome measures for soil-transmitted helminth infections. TRIAL REGISTRATION: NCT03527732.


Assuntos
Anti-Helmínticos , Helmintíase , Tricuríase , Animais , Humanos , Albendazol/efeitos adversos , Ivermectina/uso terapêutico , Solo , Tricuríase/tratamento farmacológico , Helmintíase/tratamento farmacológico , Anti-Helmínticos/uso terapêutico , Ancylostomatoidea , Trichuris , Fezes
18.
Am J Trop Med Hyg ; 110(4): 677-680, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38460198

RESUMO

Unlike praziquantel, artemisinin derivatives are effective against juvenile schistosome worms. We assessed the efficacy and safety of a single oral dose of artesunate plus sulfalene-pyrimethamine versus praziquantel in the treatment of Schistosoma mansoni. Seventy-three schoolchildren (aged 9-15 years) with confirmed S. mansoni infection in Rarieda, western Kenya, were randomly assigned to receive either a single oral dose of artesunate plus sulfalene-pyrimethamine (n = 39) or a single dose of praziquantel (n = 34). The cure and egg reduction rates at 4 weeks posttreatment were 69.4% (25/36) versus 80.6% (25/31) (P = 0.297) and 99.1% versus 97.5% (P = 0.607) in the artesunate plus sulfalene-pyrimethamine group versus praziquantel group, respectively. Fourteen children developed adverse events, and there were no serious adverse events. A single oral dose of artesunate plus sulfalene-pyrimethamine has efficacy comparable to that of praziquantel in the treatment of S. mansoni, but these results should be confirmed in larger randomized controlled trials.


Assuntos
Anti-Helmínticos , Artemisininas , Esquistossomose mansoni , Sulfaleno , Criança , Animais , Humanos , Praziquantel/efeitos adversos , Artesunato/uso terapêutico , Schistosoma mansoni , Quênia , Sulfaleno/farmacologia , Sulfaleno/uso terapêutico , Pirimetamina/uso terapêutico , Artemisininas/efeitos adversos , Quimioterapia Combinada , Esquistossomose mansoni/tratamento farmacológico , Resultado do Tratamento , Anti-Helmínticos/uso terapêutico
19.
Am J Trop Med Hyg ; 110(4): 681-686, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471161

RESUMO

This study was undertaken to understand the perspective of adolescents in endemic communities of India regarding soil-transmitted helminth (STH) infections and community-wide mass drug administration (cMDA). A multicountry community-based cluster-randomized trial, the Deworm3 trial, tested the feasibility of interrupting STH transmission with cMDA, where all individuals aged 1-99 are treated empirically with albendazole. Using a guideline based on the Consolidated Framework for Implementation Research, eight focus group discussions were conducted among 57 adolescents from the trial site in India and analyzed on ATLAS.ti 8.0 software using an a priori thematic codebook. Adolescents believed that adults could be a source of STH infection because they were not routinely dewormed like the children through the national deworming program. Perceived benefits of cMDA for all were better health and increased work efficiency. Perceived barriers to adults' participation in cMDA was their mistrust about the program, fear of side effects, perceived low risk of infection, and absence during drug distribution. To encourage adult participation in cMDAs, adolescents suggested community outreach activities, engaging village influencers and health workers, and tailoring drug distribution to when adults would be available. Adolescents were confident in their ability to be change agents within their households for treatment compliance. Adolescents provided insights into potential barriers and solutions to improve adult participation in cMDA, identified best practices of cMDA delivery, and suggested that they have unique roles as change agents to increase their household participation in cMDA.


Assuntos
Anti-Helmínticos , Glutamatos , Helmintíase , Helmintos , Compostos de Mostarda Nitrogenada , Adulto , Criança , Animais , Humanos , Adolescente , Administração Massiva de Medicamentos , Solo/parasitologia , Helmintíase/tratamento farmacológico , Helmintíase/epidemiologia , Helmintíase/prevenção & controle , Índia/epidemiologia , Anti-Helmínticos/uso terapêutico , Prevalência
20.
Eur J Med Chem ; 269: 116338, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522112

RESUMO

Monogenea, a prevalent parasite in aquaculture, poses significant threats to the industry, leading to substantial losses. Current preventive measures have proven insufficient, necessitating the development of novel and effective anti-parasitic drugs. In this investigation, we obtained the full-length myosin cDNA sequence by analyzing three-generation transcriptome data, revealing a 5817-base sequence encoding 1938 amino acids. Subsequently, we modeled and analyzed the characteristics of the secondary and tertiary of myosin, pinpointing the crucial functional region within the motor domain (amino acids 1-768). The prokaryotic expression of this domain yielded a protein of 87.44 kDa, confirmed as myosin by Western Blotting. Molecular docking identified ASN439 as the key amino acid residue involved in arctigenin and myosin binding, a result corroborated by site-directed mutagenesis, affirming the active cavity of this interaction. Chalcone and shikonin were chosen from a virtual sieve of molecular library of natural drugs based on the active cavity. Chalcone and shikonin exhibited EC50 values of 1.085 mg/L and 0.371 mg/L, respectively, with corresponding IC50 values for myosin of 0.44 mM and 0.14 mM. Given its superior activity and structure, shikonin was selected for further optimization of drug molecule design, culminating in the discovery of 1,4-naphthoquinone as a potent antiparasitic agent. This compound demonstrated an EC50 of 0.047 mg/L, LC50 of 0.23 mg/L, and a TI index of 4.893. These findings collectively highlight the potential of shikonin and 1,4-naphthoquinone as alternative compounds to control Gyrodactylus infections. Further optimization of medicinal chemistry holds promise for the development of more potent 1,4-naphthoquinone analogues, offering prospects for future anthelmintic control through combinatorial or replacement strategies.


Assuntos
Anti-Helmínticos , Chalconas , Naftoquinonas , Simulação de Acoplamento Molecular , Desenho de Fármacos , Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...